asss Development Guide

September 18, 2003

1 Introduction

If you're reading this, you probably already know that asss is a server for the multiplayer
game Subspace, written mostly in C and Python. This document will try to help you to
understand how asss works internally and how to develop for it.

There are three types of things you might want to do with asss: modify the existing
source (the stuff in the core distribution), write new modules from scratch in C, and write
new modules from scratch in Python. You're welcome to do any of those three things,
depending on your goals, but I'd like to encourage people to try to write new modules in
Python if possible, and only use C if there’s a good reason for it (efficiency concerns, linking
with other libraries, etc.). Don’t let the fact that you don’t know Python discourage you;
it’s a very easy language to learn. Also don’t be discouraged by the current incompleteness
of the Python interface to asss. It will improve as users submit requests for things that
they need added to it.

2 Building

If you want to build all of asss from scratch, there are a few dependencies you need to
be aware of: Python, version 2.2 or greater, Berkeley DB, version 4.0 or greater, and
the mysql client libraries (any recent version should be ok). If you're building on a unix
system, you’ll need to use GNU make.

The basic procedure is to edit the definitions at the top of the provided Makefile to
point to the directories where your libraries are installed. After that, running make should
build all of asss, which consists of a binary named asss and a bunch of . so files containing
the modules. Running make install will copy those binaries to the bin directory one
level up.

If you’re missing one or more of those libraries, you can still build the remaining parts
of asss: If you're missing Python, remove pymod.so from the list of stuff to build (the
variable ALL_STUFF). If you’re missing mysql, remove database.so. If you're missing
Berkeley DB, remove persist.so.

2.1 Building on FreeBSD
FIXME



2.2 Building on Windows
FIXME

3 Basic Architecture

I had several goals when designing asss: It should be modular, so that server admins
could plug in their own custom functionality in addition to or in place of any part of the
server. It should support runtime loading, so functionality could be added, removed, and
upgraded without taking down the server. It should be robust and efficient.

Those goals led to a design that might look a little scary at first, but is actually pretty
simple if you put a little effort into understanding it. However, there’s a lot of indirection,
and it can be difficult to understand the control flow in certain places, because of the
pervasive use of callbacks. Hopefully this document can provide enough information that
anyone can understand how it all works, and more importantly, can figure out how to
modify or extend it to do what they want.

The three main pieces of the architecture are modules, interfaces, and callbacks.

3.1 Modules

Almost all of the code in asss is part of a module (just about everything except main.c,
module.c, cmod.c, and util.c). A module is just a piece of code that runs as part of the
server. Modules can currently be written in either C or Python.

Some examples of modules are core, which manages player logins and other really im-
portant bits, flags, which manages the flag game, buy which provides an implementation
of the ?buy command, pymod which allows Python modules to exist, and persist, which
provides database services for the rest of the server.

Modules written in C have a single entry point function.

Modules by themselves can’t do very much. In order to be useful, modules have to
talk to other modules. The two main ways for modules to communicate are interfaces and
callbacks.

3.2 Interfaces

An interface in asss is just a set of function signatures. They’re implemented by C structs
containing function pointers (and rarely, pointers to other types of C data). Each interface
has an identifier (a string, although a C macro is used to hide the actual value of the string),
and the identifier contains a version number. If the contents of an interface is changed,
the version number should be incremented.

Interfaces are used for two slightly different purposes in asss: they are used for export-
ing functionality from one module to others, and they are used for customizing a specific
part of the server’s behavior. Both uses used the same set of functions, although in slightly
different ways, so you should be aware of the differences.

The module manager (one of the pieces of asss that isn’t in a module itself) manages
interface pointers for the whole server. It has several available operations, which are
exposed through an interface of its own:



e A module can register an interface for other modules to use. To do this, it creates
a struct and initializes its fields with pointers to the functions it’s going to use to
implement the interface. (Almost always , this struct will be statically allocated.) A
special macro is used to provide the identifier of the interface that this struct is going
to implement, and also to provide a unique name for this implementation. Then the
RegInterface function of the module manager interface is called.

An interface can be registered globally for the whole server, or registered for a single
arena only.

e A module can unregister an interface that it has previously registered, using UnregInterface.
The same arena pointer that is passed into RegInterface should be passed into this
function. Note that unregistering an interface can fail! See below about reference
counts.

e A module can request a pointer to an implementation of an interface, given the
interface identifier, using GetInterface.

e A module can request a pointer to a specific implementation of an interface, with
GetInterfaceByName.

e A module can return a reference to an interface that it acquired with one of the
previous two functions, using ReleaseInterface.

3.2.1 Reference counts

Implementations of interfaces are reference counted. A module that calls either of the
GetInterface calls that returns a valid pointer owns a reference to that implementation,
and must later return it with ReleaseInterface. Calling UnregInterface on an interface
pointer will fail if there are any outstanding references to that pointer (and it will return
the number of references).

3.2.2 Arena-specific interfaces

The functions RegInterface, UnregInterface, and GetInterface all take an optional
arena pointer. Interfaces that serve only to export functionality will generally be registered
globally for the whole server, and there is only one possible implementation for each of
them. To register an interface globally, or to request a globally registered interface, the
macro ALLARENAS should be passed as the arena pointer.

Interfaces that are used to select among different behaviors might be registered per-
arena. Passing a pointer to a valid arena to RegInterface makes that interface pointer
available only to modules who call GetInterface with that arena. If a module calls
GetInterface with a valid arena pointer, but there is no interface pointer with that id
registered for that arena, it will fall back to an interface registered globally with that id,
if possible. That allows a module to register a ”default” implementation for an interface,
and let other modules override it for specific arenas.



3.2.3 Priorities

Another feature available when using the interface system to select among different be-
haviors is priorities. Priorities should be used when it is expected that multiple imple-
mentations of the same interface will be registered globally at the same time. Currently,
priorities are used when selecting which authentication implementation to use.

An implementation of an interface may specify a priority (any positive integer) using
a variant of the macro used to specify the identifier and implementation name. As long
as all implementations of that interface are registered with a priority, GetInterface will
always return the one with the highest priority (in the absence of priorities, the last one
registered will be returned).

Note that to use the priorities feature, all implementations of that interface must be
registered with priorities.

3.2.4 Example: declaring, using, and defining interfaces

Declaring Here’s a sample declaration of an interface, taken from core.h:

#define I_FREQMAN "fregman-1"

typedef struct Ifregman {
INTERFACE_HEAD_DECL
void (*InitialFreq) (Player *p, int *ship, int *freq);
void (xShipChange) (Player *p, int *ship, int *freq);
void (xFreqChange) (Player *p, int *ship, int *freq);
} Ifreqgman;

The definition on the first line creates a macro that will be used to refer to the in-
terface identifier (which consists of the string “freqman” followed by a version number).
By convention, interface id macros are named I_<something>, and identifier strings are
<something>-<version>.

Next, a C typedef is used to create a type for a struct. By convention, struct types
start with a capital I followed by the interface name in lowercase. The first thing in the
struct is a special macro (INTERFACE_HEAD_DECL) that sets up a few special fields used
internally by the interface manager. The three fields are declared as function pointers
using standard C syntax.

Using To call a function in this interface, a module might use code like this (adapted
from core.c):

int freq = 0, ship = player->p_ship;
Ifregman *fm = mm->GetInterface(I_FREQMAN, player->arena) ;
if (fm) {
fm->InitialFreq(player, &ship, &freq);
mm->ReleaseInterface(fm);



This code declares a pointer to a freq manager interface, and requests the registered
implementation of the freq manager interface for the arena that the player is in. If it finds
one, it calls a function in it and then releases the pointer.

The freq manager interface is of the kind used to select among alternate behavior. For
interfaces used for exporting functionality, typically a module will call GetInterface for
all the interfaces it needs when it loads, and then keep the pointers until it unloads, at
which point it calls ReleaseInterface on all of them.

Defining This is a trivial implementation of the freq manager interface, used by the
recorder module to lock all players in spectator mode:

local void fregman(Player *p, int #*ship, int *freq)

{
*ship = SPEC;
*freq = 8025;
I
local struct Ifregman lockspecfm =
{
INTERFACE_HEAD_INIT(I_FREQMAN, "fm-lock-spec")
fregman, fregman, fregman
s

First the functions that will implement the interface are defined. In this case, one real
function is being used to implement three functions in the interface. Then a static struct
is declared to represent the implementation. The first thing in the struct initializer is a
macro, analagous to the macro used in the declaration. INTERFACE_HEAD_INIT takes two
arguments: the first is the interface identifier, and the second is the unique name given to
this implementation. Alternately, INTERFACE_HEAD_INIT_PRI can be used, which takes a
third argument that is the priority.

3.3 Callbacks

Callbacks are somewhat simpler than interfaces, although they share many features. A
callback is a single function signature, along with an identifier. Callback identifiers aren’t
versioned, but they probably should be.

Like interfaces, callbacks are also managed by the module manager. They can be
registered globally or for a single arena. Unlike interfaces, many callbacks registered to
the same identifier can exist at once, and all are used. The module manager functions
dealing with callbacks are:

e To register a callback, use RegCallback, which takes a callback id, a function to call,
and an arena to register it to. Like interfaces, use ALLARENAS to indicate a globally
registered callback.

e Use UnregCallback to unregister a callback. It should be called with the same
arguments as RegCallback.



e To query which callbacks are currently registered for an identifier, use LookupResult.
They will be returned as a list.

e After using the list, use FreeLookupResult to return the memory used by the list.

Most of the time, you can use a provided macro to invoke all the callbacks of a certain
type, so you won'’t need to use LookupResult and FreeLookupResult at all.

3.3.1 Example: declaring, defining, and calling a callback

Declaring Here’s how the flag win callback is declared:

#define CB_FLAGWIN "flagwin"
typedef void (*FlagWinFunc) (Arena *arena, int freq);

There’s a macro (the naming convention is to start callback macro names with CB_),
and a C typedef giving a name to the function signature. All callbacks should return void.

Defining To register a function to be called for this event:

local void MyFlagWin(Arena *arena, int freq)
{

/* ... contents of function ... */

}

/* somewhere in the module entry point */
mm->RegCallback (CB_FLAGWIN, MyFlagWin, ALLARENAS);

Calling There is a special macro provided to make calling callbacks easier: DO_CBS. To
use it, you must provide the callback id, the arena that things are taking place in (or
ALLARENAS if there is no applicable arena), the C type of the callback functions, and the
arguments to pass to each registered function. It looks like:

DO_CBS(CB_FLAGWIN, arena, FlagWinFunc, (arena, freq));

4 Important data structures

There are several important structures that you’ll need to know about to do anything
useful with asss. This section will describe each of them in detail.

4.1 Player

The Player structure is one of the most important in asss. There’s one of these for
each client connected to the server. These structures are created and managed by the
playerdata module. (The details of when exactly in the connection process a player
struct is allocated is covered below, in the section on the player state machine.)



The first part of the player struct, which contains many important fields, is actually in
the format of the packet that gets sent to players to inform them about other players. The
benefit of using the packet format directly to store those fields is that there’s no copying
necessary when the packet needs to be sent, as the necessary information is already in the
right format.

The format of the player data packet, and then the main player struct, will be given
below, and then each field will be covered in detail.

struct PlayerData {
u8 pktype;
i8 ship;
u8 acceptaudio;
char name[20];
char squad[20];
i32 killpoints;
i32 flagpoints;
i16 pid;
i16 freq;
i16 wins;
i16 losses;
i16 attachedto;
i16 flagscarried;
u8 miscbits;

};

struct Player {
PlayerData pkt;
#define p_ship pkt.ship
#define p_freq pkt.freq
#define p_attached pkt.attachedto
int pid, status, type, whenloggedin;
Arena *arena, *oldarena;
char name[24], squad[24];
il6 xres, yres;
ticks_t connecttime;
unsigned int ignoreweapons;
struct PlayerPosition position;
u32 macid, permid;
char ipaddr[16];
const char *connectas;
struct {
unsigned authenticated : 1;
unsigned during_change : 1
unsigned want_all_lvz : 1;
unsigned during_query : 1;
unsigned no_ship : 1;



unsigned no_flags_balls : 1;
unsigned sent_ppk : 1;
unsigned see_all_posn : 1;
unsigned paddingl : 24;
} flags;
byte playerextradatal0];
+;

Details on the specific fields of the player data packet:
pktype The type byte for the player data packet.
ship The ship that the player is in. 0 for Warbird, 8 for spectator.
acceptaudio Whether the player is willing to accept .wav messages.
name The player’s name. Note: this field is not necessarily null-terminated.
squad The player’s squad. Note: this field is not necessarily null-terminated.

killpoints, flagpoints Part of the player’s score. Note that asss doesn’t use these fields
as the authoritative score, and in the future, they might be unused entirely.

pid An identifier for the player. Pids are used extensively in the game protocol, but not
used much internally in the server.

freq The player’s frequency.
wins, losses More parts of the score. See notes on killpoints and flagpoints.
attachedto Contains the pid of the player that this player is a turret on.

flagscarried The number of flags that the player is holding. This field isn’t guaranteed
to be accurate, and is only used to help the client figure out where the flags are when
it first enters.

miscbits Currently, this field is used only for specifying whether the player has a King-
of-the-Hill crown or not.

Details on the specific fields of the player structure:
pkt This is the player data packet described above.
p_ship This “virtual” field refers to the ship field of pkt.
p_freq This “virtual” field refers to the freq field of pkt.
p_attached This “virtual” field refers to the attachedto field of pkt.
pid The player id of the player. It should always agree with the pid value in pkt.

status The current state of the player. See the description of the player state machine
below. State values are named with an initial S_.



type The client type of this player. Possible values are T_UNKNOWN, T_FAKE (a fake player
created and managed by the server, used for autoturrets), T_VIE (a Subspace 1.34
or 1.35 client), T_CONT (a Continuum client), or T_CHAT (a client using the chat
protocol).

whenloggedin This field is used by the player state machine to make the proper transi-
tions when a player is logging out.

arena A pointer to the arena that this player is in. It may be null if the player isn’t in
an arena yet, or is between arenas.

oldarena This stores the previous value of arena when arena is set to null. It’s used to
make sure scores and other persistent information is saved properly when switching
arenas or logging out.

name The player’s name, guaranteed to be null terminated.
squad The player’s squad, guaranteed to be null terminated.

xres, yres The player’s screen resolution. Only valid when arena is not null and for
standard (T_VIE and T_CONT) clients.

connecttime The time when the player first connected (in ticks).

position The last known position of the player. This contains a few self-explanatory
fields: x, y, xspeed, yspeed, and bounty. It also contains a status field, which is a
bitfield of various ship equipment.

macid, permid Various identifying values provided by standard clients.
ipaddr A textual representation of the IP address the client is connected from.

connectas If the player has connected to a virtual server that specifies a default arena
name, this will point to that name. Otherwise it will be null.

flags These are a bunch of one-bit flags that are used throughout the server:

authenticated If the player has been authenticated by either a billing server or a
password file.

during_change Set when the player has changed freqs or ships, but before he has
acknowleged it.

want_all_lvz If the player wants optional .lvz files.

during_query If the player is waiting for db query results.

no_ship If the player’s lag is too high to let him be in a ship.
no_flags_balls If the player’s lag is too high to let him have flags or balls.
sent_ppk If the player has sent a position packet since entering the arena.

see_all_posn If the player is a bot who wants all position packets.

playerextradata This variable-length array is carved up by the player manager to store
per-player data for other modules in the server. See the section on per-player data
below.



4.2 Arena
FIXME

4.3 Target
FIXME

5 Memory management

FIXME

5.1 Per-player data
FIXME

5.2 Per-arena data
FIXME

6 Threading

FIXME

7 Persistent data

FIXME

8 The Python interface

FIXME

9 Misc. internals

9.1 The player state machine
FIXME

9.2 The arena state machine
FIXME

10



10 Reference

10.1 Source code files
FIXME

10.2 Interfaces
FIXME

10.3 Callbacks
FIXME

10.4 The utility library
FIXME

11 Tutorials

11.1 log_console
FIXME

11.2 logman
FIXME

11



